Multimodal Vectorizers
Unbody's Multi-Modal Vectorizers are designed to handle and integrate data from various content types, including text, images, videos, and audio.
This section covers how these vectorizers create a unified vector space for cross-modal interactions and the types of data they can process. We have also provided Information on choosing the right multi-modal vectorizer for your project's specific needs.
multi2vec-bind
- Overview: This is a multimodal vectorizer capable of handling various data types.
- About the Model: The model facilitates cross-modal search and retrieval, integrating different types of data into a unified vector space.
- Third-Party Management: Not specified.
- Strengths: The strength of the model is seamless interaction and search across various data types.
- Limitations: The model has complexity in managing and configuring multimodal data.
- Best For: It is best for projects requiring integrated analysis across different content types.
- Production Status: In roadmap. You can upvote on our GitHub for earlier access.
- Available Options: Supports text, images, videos, audio, IMU data, depth images, and thermal images.